
Modeling Financial Volatility with Multinomial

Generalized Auto-Regressive Conditional

Heteroskedasticity

Dheer Avashia∗

November 2024

Abstract

Modeling the levels of volatility for a portfolio of assets has been imperative in

analyzing individual financial decisions. In this paper, I explore models that allow for

volatility clustering (ARCH and GARCH) and specifically look at a five-year dataset

of the S&P 500 stocks to model the returns to a portfolio of assets using Multinomial

GARCH (DCCM).
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1 Introduction

Understanding financial volatility plays an imperative role in the context of risk assessment

and financial decision-making (portfolio and investment choices). Predicting and modeling

volatility has, therefore, become extremely salient in financial econometrics.

Early models for financial time series, such as the Auto-Regressive (AR) and Moving

Average (MA) models, assumed homoskedastic errors, where the variance remains constant

over time. While these models provide a solid foundation, they fail to account for volatility

clustering- the phenomenon that periods of high volatility are followed by high volatility

and low volatility followed by low volatility. which is a common characteristic observed in

financial returns.

To address this limitation, Engle (1982) introduced the Auto Regressive Conditional

Heteroskedasticity (ARCH) model, which allows conditional variances to depend on past

squared returns. This was a significant advancement as it enabled the modeling of volatility

clustering. However, the ARCH model has its own limitations, including the need for a

large number of parameters for long memory effects. Bollerslev (1986) extended the ARCH

framework by proposing the Generalized ARCH (GARCH) model, which incorporates lagged

conditional variances into the model specification, providing a more robust representation of

volatility dynamics.

In this paper, I build on these foundational models by exploring Multinomial GARCH as

a framework for modeling the volatility of a portfolio of assets. Using a five-year dataset of

S&P 500 stocks, I aim to estimate and interpret the volatility dynamics within a multivariate

framework, highlighting the benefits of modeling time-varying correlations across assets.

This approach not only provides a comprehensive view of asset risk but also higlights the

importance of asset interdependence in portfolio management.
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2 Literature Review

In this section, I talk briefly about financial volatility in the context of stocks is typically

defined as (and will be defined as for the course of this paper). I then explore how Univariate

ARCH and GARCH model the volatility of stock returns, and further talk about current

extensions in these models.

2.1 Financial Volatility

Financial volatility is, simply put, the variation in returns from a financial asset over a period

of time measured by the standard deviation of returns. Asset volatility is an important part

of the measurement of risk associated with the investment in a particular asset. If we consider

a time series of returns for some asset (rt)
N
t=1, we can think about the volatility of the asset

as σt.

2.2 Univariate ARCH

Engle proposed that unobservable second moments can be modeled by specifying a functional

form for the conditional variance and modeling first and second moments jointly. More

simply, the argument is that if we are willing to make certain assumptions about the way

variance behaves, we can predict volatility. Suppose we have a N × 1 times series vector of

returns, (rt)
N
t=1. We can model the returns as a function of the mean returns µ plus some

error term ϵt

rt = µ+ ϵt (1)

Where the errors themselves can be modeled as,

ϵt = etσt (2)
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a white noise process (et) times the volatility (σt). In this context, the variance in squared-

returns is allowed to be conditional on past square returns, more formally, σ2
t = V ar[r2t |Ft−1]

where Ft−1 is the sigma-algebra generated by r0, ..., rt−1. The ARCH model specifies the

functional form of these conditional variances as follows,

σ2
t = ω + α1r

2
t−1...+ αpr

2
t−p (3)

= ω +

p∑
i=1

αir
2
t−i (4)

In words, the ARCH model specifics the functional form of the variance in returns as a sum

of p-lagged squared past squared returns.

2.3 Uni-variate GARCH

The Uni-variate Generalized Auto-regressive Conditional Heteroskedasticity model allowed

for the conditional variances to be dependent on the conditional variances as well. Modeling

variance as,

σ2
t = ω + α1r

2
t−1...+ αpr

2
t−p + β1σ

2
t−1 + ...+ βqσ

2
t−q (5)

= ω +

p∑
i=1

αir
2
t−i +

q∑
i=1

βiσ
2
t−i (6)

In practice, a GARCH(1,1) model does the best job of forecasting volatility (with the metric

of bias-variance trade-off) and hence is extensively used in financial modeling.

2.4 Extensions

While the standard GARCH model is powerful, it doesn’t always account for certain empir-

ical phenomena like asymmetric responses to shocks (leverage effects). Several variants have

been proposed to address these limitations:

1. EARCH (Exponential ARCH): Introduced by Nelson (1989), EARCH models impose
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an autoregressive structure on the logarithm of the conditional variance, enabling it to

take negative values and account for asymmetric effects.

2. QGARCH (Quadratic GARCH): Sentana (1995) proposed this model, which includes

an additional term for errors, allowing for asymmetric reactions.

3. AGARCH (Asymmetric GARCH): Developed by Engle and Ng (1993), AGARCHmod-

els conditional variance as dependent on the squared and non-centralized errors, cap-

turing the leverage effect.

4. TGARCH (Threshold GARCH): Zakoian (1994) introduced this model, where the

conditional standard deviation depends on positive and negative parts of past returns

separately, providing a closer alignment with empirical data.

3 Multinomial GARCH Model

The methods we have explored before are valuable in predicting the returns for individual

assets, however, if we were interested in predicting the returns to a portfolio of stocks (allow-

ing the individual stocks to be a GARCH process while allowing individual error terms to

correlate with one and other) we would use a Multinomial GARCH model. Let returns from

a stock i be a GARCH process, with N observations, formally, (rt)
N
t=1. The Multinomial

GARCH model proposes the following specification of errors from stock i at time t:

ϵt = etH
1
2
t (7)

Where Ht is a N×N matrix of conditional variances, H1/2 is positive semi-definite and et is a

N×1 vector of iid white noise, et ∼ (0, IN). The parametrization for Ht as a function of Ft−1

would allow each element to depend on q-lagged values of squared returns, p-lagged values of

elements of Ht, and cross products of ϵt. As mentioned in the literature review, GARCH(1,1)
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is often used due to its ease and predictive power, it follows, for the multinomial GARCH

case too we will consider a Multinomial GARCH(1,1) model.

3.1 Multinomial GARCH(1,1) - Dynamic Conditional Correlation

Model (DCCM)

Like there are different ways to model the conditional variance (as in ARCH and GARCH)

there are different ways to model the variance-covariance matrix Ht. For this empirical anal-

ysis, I will use the Dynamic Conditional Correlation (DCC) model as proposed by Engle

(2001). The idea here is that Ht is constructed by the variances of uni-variate GARCH(1,1)

process and the corelation between these individual processes. So, Ht = ∆tCt∆t. Here,

∆t = diag(
√
h11,t, ...,

√
hNN,t). ht contains the standard deviations of individual uni-variate

GARCH(1,1) process, and Ct is a time-varying correlational matrix (extended from constant

correlation proposed by Bollerslev). The dynamics of Ct are modeled through an intermedi-

ate matrix Qt given by,

Qt = (1− a− b)Q̄+ aet−1et−1 + bQt−1.

Q̄ is the unconditional covariance matrix of et, a and b are estimated parameters. Then Ct

is derived by Ct = diag(Qt)
−1/2Qtdiag(Qt)

−1/2.

3.2 GMM Estimator

4 Data

To analyze and model stock returns using the Multinomial GARCH model, I use a dataset

that consists of 505 stocks that were in the S&P 500 index between 2013 and 2018. The

data comes from an available Kaggle dataset in conjunction with web scraping from Yahoo

Finance. The data measures the opening price, closing price, day high, day low, and trade
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volume on a daily basis from February 8 2013 to February 7 2018. There are 619040 ob-

servations in this dataset. Below is a table of the summary of average prices for the top 10

most traded stocks (by average volume).

Table 1

Name Average Open Average Close Mean High Mean Low

1 AAPL 109.01 109.03 109.91 108.1
2 AMD 5.6 5.6 5.71 5.48
3 BAC 17.7 17.69 17.86 17.53
4 CSCO 27.72 27.73 27.94 27.51
5 F 14.12 14.11 14.23 13.98
6 FB 96.39 96.41 97.32 95.4
7 GE 26.54 26.54 26.72 26.34
8 INTC 31.79 31.82 32.07 31.53
9 MSFT 51 51.03 51.4 50.6
10 MU 22.97 22.96 23.32 22.59

Since we are interested in looking at the returns from stocks, we use the price data to

generate returns for each stock for each day. The return specification used is log returns

which is defined as, rt = log(Pt+1

Pt
), where Pt+1 is the price on the next day and Pt is the

price today. Here is a graph of the average quarterly log returns (unweighted), this is what

we would expect to see quarterly on average if we owned all 505 stocks.

Figure 1: Average Quarterly Log Returns
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5 Results

5.1 Volatility Clustering

The entire idea of modeling conditional heteroskedasticy is based on the strong prevalence

of volatility clustering. In order to check whether there is indeed volatility clustering in our

data we run a a few preliminary analysis.

One way we do this is by arranging the stocks in descending order based on the standard

deviations of the returns and pull the 3 most volatile stocks. We find that the most volatile

stocks in this dataset are CHK: Chesapeake Energy, AMD: Advanced Micro Devices, Inc.,

and FCX: Freeport-McMoRan Inc. Below is a picture of the stocks and their squared returns.

The picture does indeed show that events of low returns are typically followed by low returns

Figure 2: Volatility Clustering

and events of high returns are followed by high returns (prevalence of clustering). More

formally, we can run an ARCH LM test to check whether the coefficient on the lagged

squared return is significantly different than 0. Below is the result from using the ARCH

model on CHK.
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Table 2

Dependent variable:

Return Squared

Lagged Return Square 0.450∗∗∗

(0.025)

Constant 0.001∗∗∗

(0.0001)

Observations 1,257
R2 0.203
Adjusted R2 0.202
Residual Std. Error 0.005 (df = 1255)
F Statistic 318.668∗∗∗ (df = 1; 1255)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Clearly, the lagged term is significantly different from 0. Another test we perform is the

ARCH LM on the mean squared returns (across all 505 stocks), this test also yields evidence

of volatility clustering.

Table 3

Dependent variable:

Average Return Squared

Lagged Average Return Squared 0.325∗∗∗

(0.027)

Constant 0.00004∗∗∗

(0.00001)

Observations 1,257
R2 0.105
Adjusted R2 0.104
Residual Std. Error 0.0002 (df = 1255)
F Statistic 146.915∗∗∗ (df = 1; 1255)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2 S-GARCH(1,1)

Following the ARCH test, I also perform the Univariate GARCH(1,1) model using the tra-

ditional S-GARCH specification. Running the GARCH specification is important since in

the multinomial model we treat individual stocks as univariate GARCH processes. Given

that, I run an S-GARCH specification on CHK (the most volatile stock in this dataset) and

find the results shown in the table below.

Table 4: GARCH(1,1) Model Coefficients

Parameter Coefficient Std..Error z.Value p.Value

mu -0.0004 0.0007 -0.6213 0.5344
omega 0 0 1.8655 0.0621
alpha1 0.0893 0.0141 6.3301 0
beta1 0.9097 0.0128 71.2595 0

I also perform the GARCH model on the average returns for all the stocks and find the

following coefficients.

Table 5: GARCH(1,1) Model Coefficients

Parameter Coefficient Std..Error z.Value p.Value

mu 0.0005 0.0002 2.8151 0.0049
omega 0 0 3.9816 0.0001
alpha1 0.2123 0.0228 9.3186 0
beta1 0.7377 0.0163 45.2577 0

5.3 Multinomial GARCH- DCCM

For this paper, I will be fitting the multinomial GARCH model to one portfolio of stocks

(obviously this choice may be arbitrary and repeated across several different types and

combinations of portfolios). The portfolio of stocks I will be choosing to model with the

multinomial GARCH model is the top 10 most traded stocks (by volume), this should capture
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a good snippet of possible stocks in an average individuals’ portfolio. I run the dynamic

correlation specification, extensively explained in the multinmomial GARCH section.

I yield the 10-dimensional correlational and covariance matrices, along with the estimated

coefficients of the GARCH model and proxy correlational matrix Qt. The size of the table

of coefficient summary makes it difficult to present results clearly, however, the analysis

yields the following values for each stock. The time-dependent correlation matrix opens

Figure 3: Coeffecients Multinomial GARCH

the opportunity for interesting exploratory analysis in stock interdependence. For example

below is the time-dependent correlation between Apple and Microsoft, and Apple and GE.

Figure 4: Apple Microsoft Time Dependent Correlation
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Figure 5: Apple GE Time Dependent Correlation

The multinomial GARCH model with dynamic correlation can also be used to forecast

future correlation forecasts along with changes in returns given that independent stocks are

allowed to correlate with one and other. For example below is the first correlational forecast

based on the multinomial GARCH model. All of my analysis is performed in R-studio and

Figure 6: First Period Correlation Forecasts

the code can be found in the appendix section of this paper.
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