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Abstract

Modeling the levels of volatility for a portfolio of assets has been imperative in
analyzing individual financial decisions. In this paper, I explore models that allow for
volatility clustering (ARCH and GARCH) and specifically look at a five-year dataset
of the S&P 500 stocks to model the returns to a portfolio of assets using Multinomial
GARCH (DCCM).
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1 Introduction

Understanding financial volatility plays an imperative role in the context of risk assessment
and financial decision-making (portfolio and investment choices). Predicting and modeling
volatility has, therefore, become extremely salient in financial econometrics.

Early models for financial time series, such as the Auto-Regressive (AR) and Moving
Average (MA) models, assumed homoskedastic errors, where the variance remains constant
over time. While these models provide a solid foundation, they fail to account for volatility
clustering- the phenomenon that periods of high volatility are followed by high volatility
and low volatility followed by low volatility. which is a common characteristic observed in
financial returns.

To address this limitation, Engle (1982) introduced the Auto Regressive Conditional
Heteroskedasticity (ARCH) model, which allows conditional variances to depend on past
squared returns. This was a significant advancement as it enabled the modeling of volatility
clustering. However, the ARCH model has its own limitations, including the need for a
large number of parameters for long memory effects. Bollerslev (1986) extended the ARCH
framework by proposing the Generalized ARCH (GARCH) model, which incorporates lagged
conditional variances into the model specification, providing a more robust representation of
volatility dynamics.

In this paper, I build on these foundational models by exploring Multinomial GARCH as
a framework for modeling the volatility of a portfolio of assets. Using a five-year dataset of
S&P 500 stocks, I aim to estimate and interpret the volatility dynamics within a multivariate
framework, highlighting the benefits of modeling time-varying correlations across assets.
This approach not only provides a comprehensive view of asset risk but also higlights the

importance of asset interdependence in portfolio management.



2 Literature Review

In this section, I talk briefly about financial volatility in the context of stocks is typically
defined as (and will be defined as for the course of this paper). I then explore how Univariate
ARCH and GARCH model the volatility of stock returns, and further talk about current

extensions in these models.

2.1 Financial Volatility

Financial volatility is, simply put, the variation in returns from a financial asset over a period
of time measured by the standard deviation of returns. Asset volatility is an important part
of the measurement of risk associated with the investment in a particular asset. If we consider
a time series of returns for some asset (r;)Y,, we can think about the volatility of the asset

as O¢.

2.2 Univariate ARCH

Engle proposed that unobservable second moments can be modeled by specifying a functional
form for the conditional variance and modeling first and second moments jointly. More
simply, the argument is that if we are willing to make certain assumptions about the way
variance behaves, we can predict volatility. Suppose we have a N X 1 times series vector of
returns, (r;)Y,. We can model the returns as a function of the mean returns u plus some

error term e

Tt:M+€t (1)

Where the errors themselves can be modeled as,

€t = €10¢ (2)



a white noise process (e;) times the volatility (o;). In this context, the variance in squared-
returns is allowed to be conditional on past square returns, more formally, o7 = Var[r?|F,_i]
where F; 1 is the sigma-algebra generated by ry,...,7;_1. The ARCH model specifies the

functional form of these conditional variances as follows,
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In words, the ARCH model specifics the functional form of the variance in returns as a sum

of p-lagged squared past squared returns.

2.3 Uni-variate GARCH

The Uni-variate Generalized Auto-regressive Conditional Heteroskedasticity model allowed
for the conditional variances to be dependent on the conditional variances as well. Modeling

variance as,
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In practice, a GARCH(1,1) model does the best job of forecasting volatility (with the metric

of bias-variance trade-off) and hence is extensively used in financial modeling.

2.4 Extensions

While the standard GARCH model is powerful, it doesn’t always account for certain empir-
ical phenomena like asymmetric responses to shocks (leverage effects). Several variants have

been proposed to address these limitations:

1. EARCH (Exponential ARCH): Introduced by Nelson (1989), EARCH models impose
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an autoregressive structure on the logarithm of the conditional variance, enabling it to

take negative values and account for asymmetric effects.

2. QGARCH (Quadratic GARCH): Sentana (1995) proposed this model, which includes

an additional term for errors, allowing for asymmetric reactions.

3. AGARCH (Asymmetric GARCH): Developed by Engle and Ng (1993), AGARCH mod-
els conditional variance as dependent on the squared and non-centralized errors, cap-

turing the leverage effect.

4. TGARCH (Threshold GARCH): Zakoian (1994) introduced this model, where the
conditional standard deviation depends on positive and negative parts of past returns

separately, providing a closer alignment with empirical data.

3 Multinomial GARCH Model

The methods we have explored before are valuable in predicting the returns for individual

assets, however, if we were interested in predicting the returns to a portfolio of stocks (allow-

ing the individual stocks to be a GARCH process while allowing individual error terms to

correlate with one and other) we would use a Multinomial GARCH model. Let returns from
N

a stock ¢ be a GARCH process, with N observations, formally, (r;);L;. The Multinomial

GARCH model proposes the following specification of errors from stock ¢ at time ¢:

=

€t — eth (7)

Where H, is a N x N matrix of conditional variances, H'/? is positive semi-definite and e, is a
N x 1 vector of iid white noise, e; ~ (0, Iy). The parametrization for H; as a function of F;_4
would allow each element to depend on g-lagged values of squared returns, p-lagged values of

elements of H;, and cross products of ¢;. As mentioned in the literature review, GARCH(1,1)



is often used due to its ease and predictive power, it follows, for the multinomial GARCH

case too we will consider a Multinomial GARCH(1,1) model.

3.1 Multinomial GARCH(1,1) - Dynamic Conditional Correlation

Model (DCCM)

Like there are different ways to model the conditional variance (as in ARCH and GARCH)
there are different ways to model the variance-covariance matrix H;. For this empirical anal-
ysis, I will use the Dynamic Conditional Correlation (DCC) model as proposed by Engle
(2001). The idea here is that H; is constructed by the variances of uni-variate GARCH(1,1)
process and the corelation between these individual processes. So, H; = A;C;4;. Here,
Ay = diag(\/m e \/m) h; contains the standard deviations of individual uni-variate
GARCH(1,1) process, and C; is a time-varying correlational matrix (extended from constant
correlation proposed by Bollerslev). The dynamics of C} are modeled through an intermedi-

ate matrix (); given by,

Qt = (1 —a— b)@ +ae;_1€4-1 + thfl.

() is the unconditional covariance matrix of e;, a and b are estimated parameters. Then C}

is derived by C; = diag(Qt)71/2Qtdm9(Qt)71/2'

3.2 GMM Estimator

4 Data

To analyze and model stock returns using the Multinomial GARCH model, I use a dataset
that consists of 505 stocks that were in the S&P 500 index between 2013 and 2018. The
data comes from an available Kaggle dataset in conjunction with web scraping from Yahoo

Finance. The data measures the opening price, closing price, day high, day low, and trade



volume on a daily basis from February 8 2013 to February 7 2018. There are 619040 ob-
servations in this dataset. Below is a table of the summary of average prices for the top 10

most traded stocks (by average volume).

Table 1

Name  Average Open  Average Close = Mean High  Mean Low

1 AAPL 109.01 109.03 109.91 108.1
2 AMD 5.6 5.6 5.71 5.48
3 BAC 17.7 17.69 17.86 17.53
4 CSCO 27.72 27.73 27.94 27.51
5 F 14.12 14.11 14.23 13.98
6 FB 96.39 96.41 97.32 95.4
7 GE 26.54 26.54 26.72 26.34
8 INTC 31.79 31.82 32.07 31.53
9  MSFT o1 51.03 51.4 50.6
10 MU 22.97 22.96 23.32 22.59

Since we are interested in looking at the returns from stocks, we use the price data to

generate returns for each stock for each day. The return specification used is log returns

Py
Py

which is defined as, r, = log( ), where P, is the price on the next day and P; is the
price today. Here is a graph of the average quarterly log returns (unweighted), this is what

we would expect to see quarterly on average if we owned all 505 stocks.

Average Quarterly Log Returns
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Figure 1: Average Quarterly Log Returns



5 Results

5.1 Volatility Clustering

The entire idea of modeling conditional heteroskedasticy is based on the strong prevalence
of volatility clustering. In order to check whether there is indeed volatility clustering in our
data we run a a few preliminary analysis.

One way we do this is by arranging the stocks in descending order based on the standard
deviations of the returns and pull the 3 most volatile stocks. We find that the most volatile
stocks in this dataset are CHK: Chesapeake Energy, AMD: Advanced Micro Devices, Inc.,
and FCX: Freeport-McMoRan Inc. Below is a picture of the stocks and their squared returns.
The picture does indeed show that events of low returns are typically followed by low returns
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Figure 2: Volatility Clustering

and events of high returns are followed by high returns (prevalence of clustering). More
formally, we can run an ARCH LM test to check whether the coefficient on the lagged
squared return is significantly different than 0. Below is the result from using the ARCH

model on CHK.



Table 2

Dependent variable:

Return Squared

Lagged Return Square 0.450™*
(0.025)
Constant 0.001***
(0.0001)
Observations 1,257
R? 0.203
Adjusted R? 0.202
Residual Std. Error 0.005 (df = 1255)
F Statistic 318.668*** (df = 1; 1255)
Note: *p<0.1; *p<0.05; **p<0.01

Clearly, the lagged term is significantly different from 0. Another test we perform is the
ARCH LM on the mean squared returns (across all 505 stocks), this test also yields evidence

of volatility clustering.

Table 3

Dependent variable:

Average Return Squared

Lagged Average Return Squared 0.325***
(0.027)
Constant 0.00004***
(0.00001)
Observations 1,257
R? 0.105
Adjusted R? 0.104
Residual Std. Error 0.0002 (df = 1255)
F Statistic 146.915** (df = 1; 1255)
Note: p<0.1; *p<0.05; ***p<0.01



5.2 S-GARCH(1,1)

Following the ARCH test, I also perform the Univariate GARCH(1,1) model using the tra-
ditional S-GARCH specification. Running the GARCH specification is important since in
the multinomial model we treat individual stocks as univariate GARCH processes. Given
that, I run an S-GARCH specification on CHK (the most volatile stock in this dataset) and
find the results shown in the table below.

Table 4: GARCH(1,1) Model Coefficients

Parameter  Coefficient  Std..Error  z.Value p.Value

mu -0.0004 0.0007 -0.6213  0.5344
omega 0 0 1.8655 0.0621
alphal 0.0893 0.0141 6.3301 0
betal 0.9097 0.0128 71.2595 0

I also perform the GARCH model on the average returns for all the stocks and find the

following coefficients.

Table 5: GARCH(1,1) Model Coefficients

Parameter  Coefficient  Std..Error  z.Value p.Value

mu 0.0005 0.0002 2.8151 0.0049
omega 0 0 3.9816 0.0001
alphal 0.2123 0.0228 9.3186 0
betal 0.7377 0.0163 45.2577 0

5.3 Multinomial GARCH- DCCM

For this paper, I will be fitting the multinomial GARCH model to one portfolio of stocks
(obviously this choice may be arbitrary and repeated across several different types and
combinations of portfolios). The portfolio of stocks I will be choosing to model with the

multinomial GARCH model is the top 10 most traded stocks (by volume), this should capture



a good snippet of possible stocks in an average individuals’ portfolio. I run the dynamic
correlation specification, extensively explained in the multinmomial GARCH section.

I yield the 10-dimensional correlational and covariance matrices, along with the estimated
coefficients of the GARCH model and proxy correlational matrix );. The size of the table
of coefficient summary makes it difficult to present results clearly, however, the analysis

yields the following values for each stock. The time-dependent correlation matrix opens

[AAPL] . mu [AAPL].arl [AAPL].omega [AAPL].alphal [AAPL].betal [AMD] . mu [AMD] . arl [AMD] .omega [AMD].alphal [AMD] . betal [BAC].mu [BAC].arl
[BAC].omega [BAC].alphal [BAC].betal [cscol.mu [csco].arl
8.594244e-04 -6.304356e-02 1.403890e-04 2.859632e-01 1.904346e-01 5.558793e-04 2.975951e-02 2.847966e-04 1.872072e-01 5.982019e-01 1.083605e-03 2.055543e-02
3.352178e-05 1.269163e-01 7.439756e-01 5.212198e-04 -6.885079e-02
[csco].omega [CSCO].alphal [CSCO].betal [FB].mu [FB].arl [FB].omega [FB].alphal [FB].betal [F1.mu [Fl.arl [F].omega [F1.alphal
[F].betal [GE].mu [GE].arl [GE].omega  [GE].alphal

1.203104e-06 9.405913e-04 9.920183e-01 1.251400e-03 -4.547372e-02 3.970049e-06 4.421907e-02 9.515584e-01 -1.334814e-04 6.100857e-02 8.948935e-05 3.376754e-01
3.025813e-01 -1.728283e-04 -4.464717e-02 1.303271e-05 1.407568e-01

[GE].betal [INTC].mu [INTC].arl [INTC].omega [INTC].alphal [INTC].betal [MSFT].mu [MSFT].arl [MSFT].omega [MSFT].alphal [MSFT].betal [MU].mu
[MU].arl [MU] . omega [Mu].alphal [MU].betal [Jointldccal
7.831751e-01 6.583011e-04 2.777615e-02 5.817196e-05 2.147010e-01 4.768491e-01 1.031369e-03 -3.800208e-02 1.467585e-06 1.348815e-02 9.797223e-01 1.878551e-03
3.456478e-02 8.819875e-06 1.222168e-02 9.757706e-01 3.277104e-03

[Joint]ldccbl
9.873211e-01

Figure 3: Coeffecients Multinomial GARCH

the opportunity for interesting exploratory analysis in stock interdependence. For example

below is the time-dependent correlation between Apple and Microsoft, and Apple and GE.

Time-Varying Correlation: AAPL and MSFT 2013-02-08 / 2018-02-06
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Figure 4: Apple Microsoft Time Dependent Correlation
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Time-Varying Correlation: AAPL and GE
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Figure 5: Apple GE Time Dependent Correlation

The multinomial GARCH model with dynamic correlation can also be used to forecast
future correlation forecasts along with changes in returns given that independent stocks are
allowed to correlate with one and other. For example below is the first correlational forecast

based on the multinomial GARCH model. All of my analysis is performed in R-studio and

.11 [,2] [,31 [.41 [,5] [,6] .71 [,8] [,91 [,10]
[1,7 1.0000 0.2578 0.3398 0.3249 0.4113 0.3193 0.2314 0.3185 0.4154 0.3359
[2,] 0.2578 1.0000 0.2476 0.2241 0.2487 0.2213 0.1853 0.2286 0.2817 0.3718
[3,] 0.3398 0.2476 1.0000 0.4232 0.2552 0.4696 0.3658 0.3055 0.3294 0.2613
[4,] 0.3249 0.2241 0.4232 1.0000 0.2875 0.3916 0.3360 0.4151 0.4173 0.2824
[5,] 0.4113 0.2487 0.2552 0.2875 1.0000 0.2362 0.1814 0.2480 0.4065 0.3313
[6,]1 0.3193 0.2213 0.4696 0.3916 0.2362 1.0000 0.3839 0.2884 0.3139 0.2729
[7,] 0.2314 0.1853 0.3658 0.3360 0.1814 0.3839 1.0000 0.1961 0.2383 0.1782
[8,] 0.3185 0.2286 0.3055 0.4151 0.2480 0.2884 0.1961 1.0000 0.4810 0.2941
[9,] 0.4154 0.2817 0.3294 0.4173 0.4065 0.3139 0.2383 0.4810 1.0000 0.2965
[10,]1 0.3359 0.3718 0.2613 0.2824 0.3313 0.2729 0.1782 0.2941 0.2965 1.0000

Figure 6: First Period Correlation Forecasts

the code can be found in the appendix section of this paper.
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